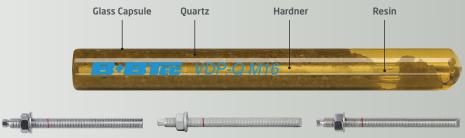
-Quartz

TDS | 2034.1

GLASS CAPSULE ANCHOR WITH ETA ASSESSMENT OPTION 1 FOR CRACKED AND NON-CRACKED CONCRETE



Cracked and Non-Cracked Concrete

TDS | 2034.1

Glass Capsule Anchor with ETA Assessment Option 1 for Cracked and Non-Cracked Concrete

Anchor Components

Glass Capsule Anchor VDP-Quartz M8 - M24

- Glass capsule containing Quartz Aggregate, Hardener and Resin
- Components are mixed by driving in Anchor Rod

Anchor Rods M8 - M24

- Steel 5.8 and 8.8 Zinc Plated and Hot Dip Galvanized
- Stainless Steel A4-70
- High Corrosion Resistant Steel 1.4529

Features

- ETA Option 1 for Cracked and Non-Cracked Concrete
- High Load Bearing Capacity
- Simplified Cleaning Procedures
- Easy Installation
- Fast Curing
- F120 Fire Rating
- VOC Assessment A+
- Absolutely NO Chemical or Plastic Waste, just a cardboard box, ready to be recycled.
- ICCONS DesignPRO Software Support

Use Conditions

- Installation Hammer/Air drilled holes.
- Static and quasi static loading, in non-cracked concrete M8 - M30
- Static and quasi static loading, in cracked concrete M10 - M24
- Installation in dry or wet Bore Holes
- Min. Installation Temperature: Mortar +5°C, Concrete +0°C
- Installation in Concrete C20/25 to C50/60
- Overhead installations are permitted

Approvals & Test Reports

Temperature Range

B+BTec VDP-Quartz Glass Capsule Anchors may be applied in the temperature ranges given below. An elevated base material temperature leads to a reduction of the bond resistance.

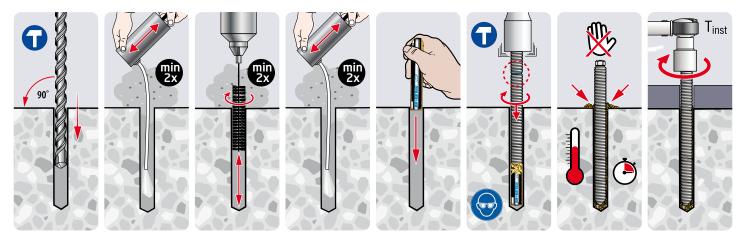
Max. long term base material temperature: Long term elevated base material temperatures are roughly constant over significant periods of time.

Max. short term base material temperature: Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Temperature Range	Temperature Base Material		Max. Short Term Base Material Temp.
Temp. Range I	-40°C to +40°C	+24°C	+40°C
Temp. Range II	-40°C to +80°C	+50°C	+80°C

Glass Capsule Anchors & the Environment

Because the total volume of these Glass Capsules is engineered to completely fill the Anchor Bore Hole, absolutely **NO CHEMICAL OR PLASTIC WASTE** remains after Installation. All that is left is a cardboard box ready to be recycled.



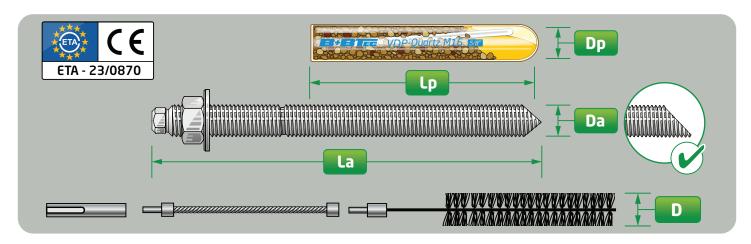
Cracked and Non-Cracked Concrete

TDS | 2034.1

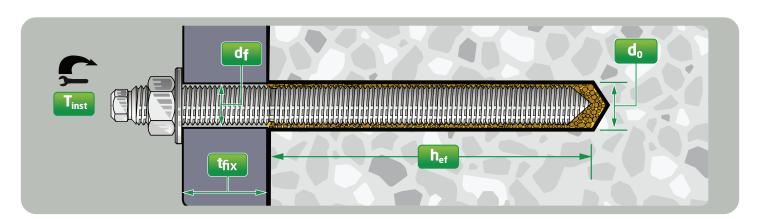
Installation Procedures Hammer/Air Drilled Holes

Minimum Curing Times

Temperature ¹⁾	°C	≥ +0	≥ +5	≥ +20	≥ +30
Min. Curing Time Dry Holes		5h	1h	20min	10min
Min. Curing Time Wet Holes		10h	2h	40min	20min


¹⁾ Concrete Temperature

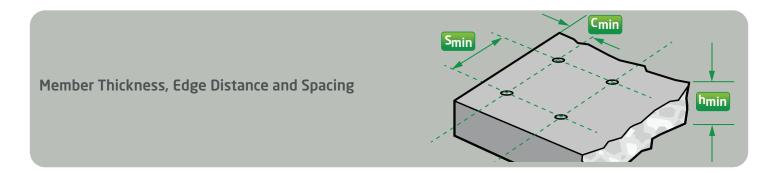
Cracked and Non-Cracked Concrete


TDS | 2034.1

Product Information for the Installation of Threaded Rods in Cracked & Non-Cracked Concrete.

Product Dimensions

Anchor Size	Da		M8	M10	M12	M16	M20	M24
Rod Length	La	[mm]	110	130	160	190	260	300
Capsule Type	VDP-Q		M8	M10	M12	M16	M20	M24
Capsule Diameter	Dp	[mm]	9	11	13	17	17	22
Capsule Length	Lp	[mm]	80	80	95	95	160	175
Capsule Volmue	Vp	[cc]	4.4	5.7	9.4	16.5	29.5	52.6
Required Volume per cm Embedment Depth	Vs	[cc/cm]	0.44	0.59	0.75	1.09	1.52	2.01
Brush Diameter	D	[mm]	11	13	16	20	24	28
Min. Brush Diameter	Dmin	[mm]	10.5	11.5	14.5	18.5	18.5	26.5


Installation Dimensions

Anchor Size	Da		M8	M10	M12	M16	M20	M24
Hole Diameter	do	[mm]	10	12	14	18	22	26
Embedment Depth	ho=hef	[mm]	80	90	110	125	170	210
Diameter Fixture Hole	df	[mm]	9	12	14	18	22	26
Fixture Thickness	tfix ≤	[mm]	15	20	30	40	55	55
Recommended Torque	Tinst	[Nm]	10	20	40	80	120	180

Cracked and Non-Cracked Concrete

TDS | 2034.1

Anchor Size	Da		M8	M10	M12	M16	M20	M24
Min. Member Thickness	hmin	[mm]	110	120	140	160	220	260
Min. Edge Distance	Cmin	[mm]	40	45	55	65	85	105
Min. Spacing	Smin	[mm]	40	45	55	65	85	105

Performance Data¹⁾

Steel Failure

Design Resistance

Non-Crack	ed Concrete	Da		M8	M10	M12	M16	M20	M24
C+1	Tensile	N_{Rd}	[kN]	12.0	18.8	27.6	41.9	67.6	99.8
Steel 5.8	Shear ²⁾	V_{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8
C+1.0.0	Tensile	N_{Rd}	[kN]	13.4	18.8	27.6	41.9	67.6	99.8
Steel 8.8	Shear ²⁾	V_{Rd}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8
A4-70	Tensile	N_{Rd}	[kN]	13.4	18.8	27.6	41.9	67.6	99.8
	Shear ²⁾	V_{Rd}	[kN]	8.3	12.8	19.2	35.3	55.1	79.5

Cracked Co	oncrete	Da		M10	M12	M16	M20	M24
Steel 5.8	Tensile	N_{Rd}	[kN]	9.4	13.8	20.9	42.7	68.5
31661 2.0	Shear ²⁾	V_{Rd}	[kN]	13.6	20.0	37.6	59.2	84.8
Steel 8.8	Tensile	N_{Rd}	[kN]	9.4	13.8	20.9	42.7	68.5
31661 0.0	Shear ²⁾	V_{Rd}	[kN]	18.4	27.2	41.9	78.4	112.8
A4-70	Tensile	N_{Rd}	[kN]	9.4	13.8	20.9	42.7	68.5
A4-7U	Shear ²⁾	V_{Rd}	[kN]	12.8	19.2	35.3	55.1	79.5

Cracked and Non-Cracked Concrete

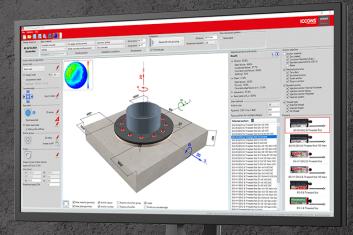
TDS | 2034.1

Recommended Loads³⁾

Steel	l Failure
\mathcal{I}	i i ulluic

Non-Cracked Concrete		Da		M8	M10	M12	M16	M20	M24
Steel 5.8	Tensile	N_{rec}	[kN]	8.6	13.5	19.7	29.9	48.3	71.3
21661 210	Shear ²⁾	V_{rec}	[kN]	6.3	9.7	14.3	26.9	42.3	60.6
Steel 8.8	Tensile	N_{rec}	[kN]	9.6	13.5	19.7	29.9	48.3	71.3
31661 0'0	Shear ²⁾	V_{rec}	[kN]	8.6	13.1	19.4	36.0	56.0	80.6
A4-70	Tensile	N _{rec}	[kN]	9.6	13.5	19.7	29.9	48.3	71.3
A4-70	Shear ²⁾	V_{rec}	[kN]	6.0	9.2	13.7	25.2	39.4	56.8

Cracked Co	oncrete	Da		M10	M12	M16	M20	M24
Steel 5.8	Tensile	N_{rec}	[kN]	6.7	9.9	14.9	30.5	48.9
21661 2'0	Shear ²⁾	V_{rec}	[kN]	9.7	14.3	26.9	42.3	60.6
Steel 8.8	Tensile	N_{rec}	[kN]	6.7	9.9	14.9	30.5	48.9
21661 0'0	Shear ²⁾	V _{rec}	[kN]	13.1	19.4	29.9	56.0	80.6
A4-70	Tensile	N_{rec}	[kN]	6.7	9.9	14.9	30.5	48.9
A4-7U	Shear ²⁾	V_{rec}	[kN]	9.1	13.7	25.2	39.4	56.8


All Loads in kN for a Single anchor in Dry/Wet, Non-Cracked/Cracked Concrete C20/25 without edge or spacing influences. Temperature Range $50^{\circ}\text{C/}80^{\circ}\text{C}$ for long/short term. Steel strength in kN without bending moment. Incl. Safety factor $_{\text{V}}\text{G}$ = 1.4 1)

²⁾ 3)

Cracked and Non-Cracked Concrete

Download DesignPRO

AS5216:2021 COMPLIANT NCC ANCHOR DESIGN

IT'S EASY AND FREE

- ✓ Fast software download and its easy and FREE!
- ICCONS® DesignPRO Anchoring Software complying with AS 5216:2021
 - Includes Design of fastenings under seismic actions
 - Includes Design of redundant non-structural system
 - Combined loading and displacement calculations
- Unique all-in-one screen interface with easy data input and results display
- Interactive 3D model display for clear anchor and baseplate layout including rotation functionality
- ✓ Integrated FEA (Finite Element Analysis) for quick base plate thickness calculations
- Offers design solutions for rigid and elastic baseplates
- Flexible custom anchor and base plate geometry design for complex shapes and applications
- Utilises Australian steel profiles and material grades
- All product and all failure modes individually checked for precise anchor analysis and selection
- Summary or detailed design report options available to save or print

FREE DOWNLOAD for DesignPRO using the following link www.iccons.com.au/software/design-pro

For further support, training and information please contact engineering@iccons.com.au

ICCONS®

TDS | 2034.1

ICCONS® PTY LTD

VICTORIA - HEAD OFFICE 383 Frankston Dandenong Rd, Dandenong South, Vic, 3175

P: 03 9706 4344

NSW Branch

Unit A, 17 Seddon Street, Bankstown, New South Wales, 2200 P: **02 9791 6869**

OLD Branch

42-44 Nealdon Dr Meadowbrook, Queensland, 4131 P: **07 3200 6455**

FNQ Branch

41 Corporate Cresent Garbutt, Queensland, 4814 P: **07 2111 3453**

S.A Branch

29-31 Weaver Street, Edwardstown, South Australia 5039 P: **08 8234 5535**

W.A. Branch

90 Christable Way, Landsdale, Western Australia, 6065 P: **08 6305 0008**

NORTHERN TERRITORY

Unit 1, 14 Menmuir Street, Winnellie, Northern Territory 0820 P: **08 8947 2758**

NEW ZEALAND

Sesto Fasteners

5E Piermark Drive, Rosedale, Auckland, New Zealand, 0632

P: **+64 9415 8564**

 ${\sf E:} \textbf{ sest of a steners} @ \textbf{gmail.com}$

THAILAND

ICCONS® (Thailand) Co. Ltd. 55 Phetkasem 62/3, Bangkhae, Bangkok 0160

P: **+ 66 2 801 0764** F: **+ 66 2 801 0764**

M: + 66 8 1 710 8745

 $E{:} \ \, \textbf{icconsthail} \\ \textbf{and} \\ \textbf{@iccons.com.au} \\$